![基于变分法的细胞演化建模](https://wfqqreader-1252317822.image.myqcloud.com/cover/598/44569598/b_44569598.jpg)
上QQ阅读APP看书,第一时间看更新
2.3.2 参数方程表达举例
现在讨论参数方程表示下平面曲线的变分问题.
假设光滑的平面曲线的参数方程表示如下:
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21445.jpg?sign=1738872316-CWnOMWuPRJV7JK7Jcog6mbYA3cnQxEiF-0-ed31234a5ba2923f9fd90d18f83d6206)
这条曲线L是泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21447.jpg?sign=1738872316-QsXzLm804yDm5Dian9KwjcJQFiGfDqwE-0-f71feec6aaca4d3112c8b2c3eaec650b)
的“极小点”.为讨论方便起见,假设泛函定义在连续可导函数集合(C1[α, β])2=(C1[α, β])×(C1[α, β])上,集合的元素满足边界条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21449.jpg?sign=1738872316-c1mvTtBSwCwDi10k1pibz5K17K2Ijy7B-0-b9c679c624e34dafeaf123d214bf8f20)
与直角坐标形式下类似,选取齐次边界条件的摄动函数(组)
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21451.jpg?sign=1738872316-gleBcftM8bH2dDGVrIqb8pUSEO7qOTAi-0-2ee13263c82d048cdbb043eaa630aca6)
假设L就是极小值函数曲线,那么摄动后的展开式如下:
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21453.jpg?sign=1738872316-VzSzZQE5eB82nnk3Gkm9cpzCfL4Bcjsu-0-cf4ada0582a2aeed53d86f76aa165932)
得到泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21455.jpg?sign=1738872316-Obv9PpJT2sSaE9LRxYcsar3bC3iI8BcO-0-8c3e1d3cfff574d94ceebf631d32bf88)
当ε=0时极小点也是驻点,曲线L满足泛函
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P36_21458.jpg?sign=1738872316-TGqnzRlmSohgfeU6MXU6GkUFexKFKKIp-0-cd5e7b531f6a11eb21a392d49e23692b)
这里利用了摄动向量{φ1,ψ1}的齐次边界条件.再利用摄动向量的任意性和定理1.5即可得到泛函式(2-22)的驻点的必要条件
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21460.jpg?sign=1738872316-QCx94To1tgUeqSVv0hAUwGu9fYhLOhUG-0-19dcc245d39e2727d8dd575fa4ce1a42)
这正是曲线在参数方程表示下泛函式(2-22)对应的欧拉-拉格朗日方程.
例2.2 等周问题的解满足
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21461.jpg?sign=1738872316-vLRkPJceZ8VHG4U7Zmku4JZ2E0JK1zV6-0-6f8e21337e4e11e1d1bc1fbc1f545d20)
解 回看等周问题的带有约束的泛函式(2-7)
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21462.jpg?sign=1738872316-5DuePCCJ9mW8sofOrOY3xHoRDgKdx429-0-f52dac05b986538e2bca1fe6f2346513)
这里的
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21464.jpg?sign=1738872316-fdAzdL2Bwdffym1hItTsTnmmymy1q17P-0-d5a32713016b69d26f28bf9d39484703)
其相应的欧拉-拉格朗日方程变成
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21465.jpg?sign=1738872316-PJMRA1eax50KVbgAHDjp7DtY29AM2xoP-0-6d1173125ba5d651009cc3a430bb6b5c)
和
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21466.jpg?sign=1738872316-OuZHElUsD86SOu9bgTL7xX8fYVJul4u1-0-413241e2e17c5e9ac22b5a62eb772a70)
对两个方程进行首次积分得到
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P37_21469.jpg?sign=1738872316-UTqzZ5mp1fpD7xPd8ruhFUojtV2iAT60-0-fdfb47c8561f9880d21cf32da781caef)
分别将上面两式乘以φ′和ψ′,再相加得到
φ φ′-C1φ′+ψ ψ′-C2ψ=0
再次积分得到
![](https://epubservercos.yuewen.com/6AAF8D/23765677509651406/epubprivate/OEBPS/Images/Figure-P38_21519.jpg?sign=1738872316-EullGg1mE0yKx2CGmMwU8qWzldANUYfT-0-224309d248a8f84c0e8c709923be75f7)
因此,可得出等周问题的必要解是圆周,也就是式(2-24).式(2-26)中的常数C1、C2和C可以依据边界条件和围成区域的曲线长度确定,这里略去讨论.