![电工电子技术项目化教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/793/42637793/b_42637793.jpg)
2.2.1 单一参数的正弦交流电路
1.纯电阻电路
负载只有电阻元件构成的电路,称为纯电阻电路。如白炽灯、电烙铁、电炉等实际元件组成的交流电路,都可近似看成是纯电阻电路,如图2-8a所示。
(1)电压与电流的关系
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_51_02.jpg?sign=1739577746-wIvhminTslJxHFkjWoomYma6vdM3fdVa-0-79fc0b21992eb60abf9c50d580e72cd1)
图2-8 纯电阻电路
如图2-8所示,电阻R两端的电压和电流采用关联参考方向,设电阻两端电压按正弦规律变化,即u=Umsinωt,根据欧姆定律
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_51_03.jpg?sign=1739577746-MKzkxf5Ay6NtWYzbr2q0sR62nmtCKOAA-0-7f410c36ef819e8154b9c09da7392799)
式中,,等式两端同时除以
,则电压与电流的有效值关系为
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_52_01.jpg?sign=1739577746-rlGFxNLXiZCSaXqK3afcdIzwK3P0z7ik-0-4c191d6f60ce29fc00dc94fdbd590fbb)
根据以上分析,可得出如下结论:
1)纯电阻电路中电压与电流同相位,即它们的初相角相同φu=φi,波形图与相量图如图2-9所示。
2)电压与电流的瞬时值、最大值、有效值关系都满足欧姆定律,即
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_52_02.jpg?sign=1739577746-zGndojchZfI7H1o8dmv4DJVzmVfE8lum-0-5b945a88de0d0cbfbc89b1360010b312)
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_52_03.jpg?sign=1739577746-JJU4PL3mSeA4GeQcCHa7OrT1oLiG2nj4-0-87d3edba7c2cb3c4edec6125ab7ce9cb)
图2-9 波形图和相量图
a)波形图 b)相量图
(2)功率
1)瞬时功率。
在任一瞬间,电阻中的电流瞬时值与同一瞬间加在电阻两端的电压瞬时值的乘积,称为电阻的瞬时功率。
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_52_04.jpg?sign=1739577746-9xquDUCxVpVpyBZnc28gqTcvcf6EnMFL-0-59348d98882307959c794672adfb3743)
由此可知,p(t)即为瞬时功率,始终是大于零的,这说明电阻在任意时刻总是消耗能量的,电阻属于耗能元件,如图2-9a所示。
2)平均功率。
瞬时功率在一个周期内的平均值,称为有功功率,用P表示,其单位为W。即
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_52_05.jpg?sign=1739577746-MCcnlZr9Ew1QQ67z1sUsWxe73RFqUXVT-0-1758b8a3118c118ab6f58ccb037a1601)
可以证明,电阻消耗的平均功率可表示为
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_52_06.jpg?sign=1739577746-Nqm6urM4KpwV3IqqTvk61ZVWfXEUp6zr-0-be73340d4f550b9af000d72a49e9e32c)
2.纯电感电路
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_52_07.jpg?sign=1739577746-BTB3rYgq09z1UNePFiisYh3LVGYA6tGZ-0-49c93295d9ccfd934ac2ddf6fabdc341)
图2-10 电感电路
由电阻很小的电感线圈组成的交流电路,可近似地看成是纯电感电路,如图2-10所示。
(1)电压与电流的关系
设电感L两端的电压和电流采用关联参考方向,u、i均为正弦量,设电流为参考正弦量,即电流的初相为零,则其瞬时表达式为i=Imsinωt。在关联参考方向下,电感元件的电压、电流关系为
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_53_01.jpg?sign=1739577746-dP1XSr9ZcFUOTmybuMdd3HiHSocwHa2M-0-fe8632ff8a618e48f56ca361f18ff115)
则电感元件上的电压为
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_53_02.jpg?sign=1739577746-z2Acga3uFdOjaLlStdql15rldCrGcDs9-0-c7c883df8e3f8c3d86ae1223de0741ac)
电压与电流的最大值关系为
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_53_03.jpg?sign=1739577746-4JFmB6Hv5CunBexG5zmWSmgd9c6AQyGJ-0-0c4d5adc0cae189bc229eb11c6f94bf0)
其中,ωL是一个具有电阻量纲的物理量,单位为Ω,起阻碍电流通过的作用,称为感抗,用XL 表示,即XL=ωL=2πfL,L为自感系数,单位是亨,用字母H表示。
电压与电流的有效值的关系为
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_53_04.jpg?sign=1739577746-9G1OsGy8fxHcHJ6ADYPrK7CSXTYrr4CU-0-e3055e61e9af2679ad38c4f41e898d51)
根据以上分析,可得出如下结论:
1)纯电感电路中电压的相位超前于电流,即它们初相角的关系为
,相量图与波形图如图2-11所示。
2)电感电路中具有感抗,感抗XL=ωL=2πfL,是频率的函数,L一定时,感抗与频率成正比。因此电感在交流电路中起阻碍电流的作用,所以电感具有“通直阻交”的特点。
3)电路中的电压与电流用有效值表示时,满足欧姆定律的关系,即
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_53_07.jpg?sign=1739577746-ibId7TFu21qXoDi7bdUmiWuP8b12dxfF-0-21908cfd86970f863964578ff860e8d8)
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_53_08.jpg?sign=1739577746-8HVa02bO3zxWhtTwLmvsi6iL7lFCJqGF-0-2c73c07e0d1f7f4cd49d5d771646e492)
图2-11 纯电感电路波形图和相量图
a)波形图 b)相量图
(2)功率
1)瞬时功率。
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_53_09.jpg?sign=1739577746-Kdfu6QzOtKMiKpTIrsGAfB36J2QDlJe1-0-b0ec44767f797bace6ecb7496fb3b086)
由上式确定的瞬时功率曲线如图2-11a所示,在第一和第三个1/4周期,p>0,线圈吸收功率,此时线圈从外电路吸收能量并储存在磁场中;在第二和第四个1/4周期,p<0,线圈输出功率,此时线圈将储存在磁场中的能量输出给外电路。
由以上讨论可知,在一个周期从平均效果来说,纯电感电路是不消耗能量的,它只是与外电路进行能量交换。电感在电路中起着能量的“吞吐”作用,其有功功率(平均功率)为零,所以电感被称为储能元件。
2)无功功率。
在纯电感电路中有功功率为零,但电路中时刻进行着能量的交换,为了表示电感和电源之间能量交换的大小,引入了无功功率的概念。把电路瞬时功率的最大值叫作无功功率,用QL表示,单位为var(乏),即
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_54_01.jpg?sign=1739577746-Y2O6TU24uRbotBBe4KerZHJ3DqK68f0l-0-bb44193c21c35177b42370544074265d)
注意:“无功”的含义是“交换”而不是“消耗”,它是相对“有功”而言的,不能理解为“无用”,生产实际中的具有电感性质的变压器、电动机等设备都是靠电磁转换工作的。
【例2-4】已知一个线圈的电感L=25.5mH,接到的正弦电源上,试求:1)该电感的感抗XL;
2)电路中的电流I及电流的瞬时值表达式;
3)其他条件不变,若外加电源的频率变为1kH,重求以上各项。
解:1)感抗XL=ωL=314×25.5×10-3Ω≈8Ω
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_54_03.jpg?sign=1739577746-KMJvE39oWsf8eXHK8Nnm7kYfcXDN2vsY-0-c9e5e2a1fb9134c5f91a2c8c2efc5be2)
电流的有效值为27.5A,相位滞后90°,则瞬时值表示为
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_54_04.jpg?sign=1739577746-7cjr5wf5EiPXpgtZBljLyVZgIqAvwpWJ-0-0c5b34105ac60d456dce8e6422ff349a)
当频率为1kHz时,Ω≈160Ω
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_54_06.jpg?sign=1739577746-lnscjE22xq97kmYYAGiLF3Rnf3iUlMyd-0-bb1013b41f69d776fdb76aeae61fe7db)
频率增加20倍,感抗也增大20倍,因而电流减小为原值的1/20,电流瞬时值表示为
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_54_07.jpg?sign=1739577746-mh7ethCvfoklLZsYBpQazbEql7iQXhpp-0-c81eb1c1ad36400cf43c69c991ff3588)
3.纯电容电路
由介质损耗少、绝缘电阻大的电容组成的交流电路,可近似地看成是纯电容电路,如图2-12所示。
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_54_08.jpg?sign=1739577746-M7FZEI1Kzs5QbXjgFzjQzbCfyXAjaUGf-0-d48d09909b751a04e156ef48158777a4)
图2-12 纯电容电路
(1)电压与电流的关系
电容C两端的电压和电流采用关联参考方向,如图2-12所示,u、i均为正弦量,设电压为参考正弦量,即电压的初相为零,则其瞬时表达式为u=Umsinωt,则有
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_54_09.jpg?sign=1739577746-P2m1KbJHHX9VhXBhisz1QecTQN5p0dsS-0-216b0e78a0a57d59f4a65b22659619a8)
则流过电容元件的电流为
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_54_10.jpg?sign=1739577746-IA7Up88YF41a1MhI4E7OtstzPDBqHexB-0-2798fad1eb1898f861a4172d38573f15)
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_55_01.jpg?sign=1739577746-NoCcTOZx8D90rXDL4X0uFfmXqEJc646A-0-0375a1bc9487e33fefcadd1eddfc9e1d)
电压与电流最大值关系为
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_55_02.jpg?sign=1739577746-GhSm0cEU9oq3wV1pLE8ajdktkntb535K-0-5e00a4438727cce9f6ef58ce76ff5a20)
式中,具有电阻量纲,单位为Ω,起阻碍电流通过的作用,称为容抗,用XC表示,即
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_55_04.jpg?sign=1739577746-uy5taOuY5LdgtgNs7EJxOtMemNcYW1jC-0-24ad40d424116b921b3e47da1a043c3f)
根据式(2-20)得出电压与电流有效值的关系为
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_55_05.jpg?sign=1739577746-jyzPBVIRAlNnhFhD5A2uhyuFzxY8iSqy-0-975335e29846175aa42ce38b51daca55)
根据以上分析,可得出如下结论:
1)纯电容电路中电压的相位滞后于电流,即它们初相角的关系为
,相量图与波形图如图2-13所示。
2)电容电路中具有容抗,容抗,是频率的函数,C一定时,容抗与频率成反比。因此电容在交流电路中随着频率的增加阻碍电流的作用反而降低,对直流有阻断的作用,所以电容具有“通交隔直”的特点。
3)电路中的电压与电流用有效值表示时,满足欧姆定律的关系,即。(2)功率
1)瞬时功率。
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_55_10.jpg?sign=1739577746-SH8ohHUf1LfpIfeMFlMrmrRLHCQi0xK3-0-1023200963757ad39483cf40a77321c5)
由上式确定的瞬时功率曲线如图2-13a所示。由图可看出p(t)是一个角频率为2ω的正弦量。在第一和第三个1/4周期,p>0,电容吸收功率,此时电容从外电路吸收能量并以电场能的形式储存起来;在第二和第四个1/4周期,p<0,电容输出功率,此时电容将储存的能量释放给外电路。
由此可见,在一个周期从平均效果来说,纯电容电路是不消耗能量的,它只是与外电路进行能量交换。电容在电路中起着能量的“吞吐”作用,其有功功率(平均功率)为零。
2)无功功率。
在纯电容电路中时刻进行着能量的交换,和纯电感电路一样,其瞬时功率的最大值被定义为无功功率,反映电容与外电路进行能量交换的幅度,用QC表示,单位为var,即
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_55_11.jpg?sign=1739577746-oHXgD4HCDOVvcgvNeh08gF9LlRKkWApb-0-f15f51af0731585d7c3c5b9001d4f6c5)
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_56_01.jpg?sign=1739577746-MLtM6eK52htCez9f0rSaHN0lPhRZHIQb-0-444488ec5979dec39a5aa1449ca37b05)
图2-13 纯电感电路波形图和相量图
a)波形图 b)相量图
【例2-5】已知一个电容器,其电容C=38.5μF,接到的正弦电压上,试求:1)该电容的容抗XC;
2)电路中的电流I及电流的瞬时值表达式;
3)其他条件不变,若外加电源的频率变为1kHz,重求以上各项。
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_56_03.jpg?sign=1739577746-fSNUshlCjgrqKtDkeqojvCtZNTJQt7g6-0-0b89c00163e116f19852d5463b8cbe0f)
电流的有效值为2.75A,相位超前90°,则瞬时值表示为
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_56_04.jpg?sign=1739577746-pVV5X1aO3JLZg6GpcujwbpclWdywmAhJ-0-3d3d4b15529be9eb571f5461118df341)
3)当频率为1kHz时,
容抗减小了20倍,因而电流增大20倍,即I'=2.75A×20=55A,电流瞬时值表示为
![](https://epubservercos.yuewen.com/DDB2EF/22139296209124706/epubprivate/OEBPS/Images/978-7-111-62533-9_56_06.jpg?sign=1739577746-6Oev4rrxUObYBvBugaVQHhiC9wsVqrQc-0-a2f0d15fff3bacdfb3c87ba3bb35c3ac)