![地下建筑工程课程设计解析与实例](https://wfqqreader-1252317822.image.myqcloud.com/cover/904/41309904/b_41309904.jpg)
2.2.3 内力计算
闭合框架的荷载设计值如图2-27所示,结构的计算简图和基本结构如图2-28所示。弹性地基梁平面框架的内力计算可采用结构力学中的力法,只需将底板按弹性地基梁考虑。
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/37_01.jpg?sign=1739578128-a8RGrxMrL92miDeYcKFh7pLPp6bKDpDS-0-01614f6ccf4f3fbf3c20823e5384ad19)
图2-27 闭合框架荷载图(设计值)
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/37_02.jpg?sign=1739578128-2FNRfjrHPXlqOmTAXYNJFG5WEh7rw1wI-0-c9b66cd983a73b073d18628a758fe994)
图2-28 计算简图和基本结构
由于结构、荷载对称,故未知力x3=0,典型方程为
δ 11 x 1+δ12x2+Δ1p=0
δ 21 x 1+δ22x2+Δ2p=0
系数δij是指在未知力xi=1作用下,沿xj方向的变位值;Δip是指外荷载作用下沿xi方向的位移,可按下式计算
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/37_03.jpg?sign=1739578128-dz0wLoEJo7pEMXgm8i886XlvtJUdCM0X-0-14390bca587107ae4f4cb46d31c0b967)
1. 计算
在单位力x1=1、x2=1及外荷载q作用下基本结构的弯矩如图2-29所示。
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/37_05.jpg?sign=1739578128-hYOWDuXudxqTSSpglZSe7cp2VOkyFmcO-0-90fbb128948d1d57dd5898f5670164ab)
图2-29 M1、M2、Mp图
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/37_06.jpg?sign=1739578128-KULgqKZMkoqqZCdHDqt0sEthfrJc9P8O-0-d4ba332b40cebe6cb4991a5933893682)
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/38_01.jpg?sign=1739578128-JgVYYb5XgmYA38HsFUS7HFQ2Xmjy0dLm-0-9ccb7f3149280451ea7ffae33c1c28af)
混凝土强度等级C30,E=3.0×104N/mm2=3.0×107kN/m2
截面惯性矩×1×0.63m4=0.018m4
根据结构力学力法的相关知识可得:
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/38_03.jpg?sign=1739578128-6au3s2k5xMuCG0YwTueXW9zYZBj6ANre-0-c7dc538e89486068389d36303c1a7eba)
综上可得:
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/38_04.jpg?sign=1739578128-NxKkAxA31pBq6tfWFYE7I2gPD6c8Cx1r-0-5195fc055bf218a4c286109c4b9fc624)
2. 计算bij、bip
特征系数
系数φiλ计算:
ch(0.368894×4.2)=2.460408,sh(0.368894×4.2)=2.248023
cos(0.368894×4.2)=0.02144,sin(0.368894×4.2)=0.99977
φ 1λ=chαxcosαx=ch(0.368894×4.2)×cos(0.368894×4.2)=0.052751
φ 2λ=chαxsinαx+shαxcosαx
=ch(0.368894×4.2)×sin(0.368894×4.2)+sh(0.368894×4.2)×cos(0.368894×4.2)
=2.50804
φ 3λ=shαxsinαx=sh(0.368894×4.2)×sin(0.368894×4.2)=2.2475062
φ 4λ=chαxsinαx-shαxcosαx
=ch(0.368894×4.2)×sin(0.368894×4.2)-sh(0.368894×4.2)×cos(0.368894×4.2)
=2.411645
(1)x1=1梁的左端M0=-M1,Q0=0,梁的右端MA=-M1,QA=0(图2-30),可求得两个未知量的初值θ10和y10。
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/39_01.jpg?sign=1739578128-uLXmxiSEclYoHfxAiqTCLg1iJrOcljbi-0-3e2b8d06678e63edd6a9a024e93d3529)
图2-30 M1作用时弹性地基梁
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/39_02.jpg?sign=1739578128-QyKmM27oL3vj8FghrvG5nyNpn3QuvbHO-0-25b44c170fe32bb4a707d4907d6b13f4)
令,G=-α,H=1;
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/39_04.jpg?sign=1739578128-4m04ocEuT3TUm6l9og1QQvUFakp1M5ry-0-4b5c40a3f82be52f084f5411b9c029a0)
则,
M A=y0Aφ3λ+θ0Bφ4λ+M0Cφ1λ+Q0Dφ2λ
Q A=y0Eφ2λ+θ0Fφ3λ+M0Gφ4λ+Q0Hφ1λ
将数据代入上式,可得:
330314.555y10+480406.2007θ10+3.2206466=0
135976.4642y10+330314.555θ10+3.02478066=0
解得,
θ 10=-1.28175×10-5,y10=8.8914×10-6
(2)x2=1梁的左端M0=-M2,Q0=0,梁的右端MA=-M2,QA=0(图2-31),可求得两个未知量的初值θ20和y20。
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/39_05.jpg?sign=1739578128-Pv3D48X9fNTZOe210Zb4bmGgMJX6OV2q-0-e8e9ca3a30a1190ed030fa87357467d6)
图2-31 M2作用时弹性地基梁
330314.555y20+480406.2007θ20+0.947249=0
135976.4642y20+330314.555θ20+0.88964137=0
解得,
θ 20=-3.76984×10-6,y20=2.61510×10-6
(3)xp 梁的左端=79.38kN·m,Q0=-75.6kN,梁的右端
,QA=75.6kN可求得两个未知量的初值
和
。另一部分:梁的左端
=150.28kN·m,Q0=0,梁的右端
=150.28kN·m,QA=0,如图2-32所示,可求得两个未知量的初值
和
。
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/40_09.jpg?sign=1739578128-AejQ4JgYYGvB17fXY0XSEOxznOyihjrC-0-8f6b7d438f2b4574d4335aa38ab9f0a7)
图2-32 外荷载作用时弹性地基梁
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/40_10.jpg?sign=1739578128-qr2jThXhwpEboeQOZ5h3a7M3IGg4y0Ag-0-572f4a93b17eeb446095b30d1df2a70e)
解得,
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/40_11.jpg?sign=1739578128-HJuAhHR2p8ZRYHtl2NE1WocvgOIKZD2t-0-85b53783599da8c52326bdba2dc251fd)
解得,
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/40_12.jpg?sign=1739578128-bCnyQgf6Car2l4onngbZjIxiNunpO3dh-0-28bb97fa0efaa305327fb4cf66d38fe8)
叠加可得:
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/40_13.jpg?sign=1739578128-H6JnFC9avMKt421r61PAfUHoZsj4NQEO-0-d710638fe410ead1e47f8e19084fbd02)
综上可得:
θ 10=-1.28175×10-5,y10=8.8914×10-6
θ 20=-3.76984×10-6,y20=2.61510×10-6
θ p0=0.000765,yp0=0.001488652
b 11=2Hθ10=2×3.4×(-1.28175×10-5)=-8.7159×10-5
b 12=b21=2θ10=2×(-1.28175×10-5)=-2.5635×10-5
b 22=2θ20=2×(-3.76984×10-6)=-7.53968×10-6
b 1p=2Hθp0=2×3.4×0.00066793=0.00454192
b 2p=2θp0=2×0.00066793=0.00133586
系数:
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/40_14.jpg?sign=1739578128-pU9mxRczvwlhcnqzmWe3IqJiPNIsAhvd-0-da97a297d8d68591a19ef15e02731615)
3. 计算未知力x1、x2
典型方程:
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/40_15.jpg?sign=1739578128-eNvSCHHCi6LdCZvDrmMjgMw6vKTKTOZm-0-53e10f28cf808fbb63af00125b406588)
(1)弯矩M计算 框架结构的弯矩采用叠加法按下式计算:
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/40_16.jpg?sign=1739578128-ZBD7PkNnrmzBxb8OgNBjpgyjFjrGzUjo-0-bf051e36ac6badc47283cfbb0dc533c6)
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/41_01.jpg?sign=1739578128-yxoZt4etfFVpvSzF1M5G4zHHVdZJdjR1-0-d0f51607698c46d3ce96496dd16384ac)
顶部中间叠加弯矩×36×4.22kN·m=79.38kN·m
弹性地基梁的弯矩按MA=y0Aφ3λ+θ0Bφ4λ+M0Cφ1λ+Q0Dφ2λ计算,=-24.205kN·m(内侧受拉)。
弹性地基框架的弯矩图见图2-33a。
(2)剪力Q计算 结构顶部:
两侧结构:
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/41_05.jpg?sign=1739578128-e1n6CAcgahRKHXjazj56SMji8Ynwj4J0-0-dd6e12be36d89fae98a37894e02dfb3b)
弹性地基梁的剪力按QA=y0Eφ2λ+θ0Fφ3λ+M0Gφ4λ+Q0Hφ1λ计算,Q左=75.6kN,Q右=-75.6kN。
弹性地基框架的剪力图如图2-33b所示。
(3)轴力N计算
上侧框架梁轴向力N=q2H=26×3.4kN=88.4kN
两侧框架柱轴向力=36×4.2/2kN=75.6kN
弹性地基梁轴向力N=q2H=26×3.4kN=88.4kN
弹性地基框架的轴力图如图2-33c所示。
![](https://epubservercos.yuewen.com/AE4759/21511157508182706/epubprivate/OEBPS/Images/41_07.jpg?sign=1739578128-O3R9blbpe8PuQL3I9QOLK7U6MtSyce27-0-31bcc23905995a807bc5defe26d2b84d)
图2-33 内力图
a)弯矩图(kN·m)b)剪力图(kN)c)轴力图(kN)