![MATLAB金融风险管理师FRM(高阶实战)](https://wfqqreader-1252317822.image.myqcloud.com/cover/187/36862187/b_36862187.jpg)
3.5 平面和曲面梯度分布
这一小节介绍常见三维平面和曲面梯度分布。图3.24展示一个垂直于x1-z平面,具体解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P124_3712532.jpg?sign=1739566315-qsYbIoOIA5j0WAuI7y6yhJOLSeVlgXaL-0-e2adcc6b8936146883dc2ee2644681de)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P124_3712533.jpg?sign=1739566315-HA0bgJt3XKq2SGGInTI3uUHgUoYukJR4-0-68b6dc30fe68c48f1ae27275f1d104c0)
图3.24 垂直于x1-z平面,梯度向量防线为x1正方向
二元函数梯度向量如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P124_3712534.jpg?sign=1739566315-IbpH4UaVIX3WjsDFaaYRPMdeaWPJclfK-0-36021b50d3a6ca1c431e577b2ae51ffe)
如图3.24所示,发现此梯度向量平行于x1轴,方向为x1正方向,向量方向和大小不随位置变化。沿着梯度方向运动,f(x1, x2)不断增大。
当改变符号x1时:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P124_3712536.jpg?sign=1739566315-izulDbjzA1TofopgsG1vDVb8ZgoJ0kX5-0-32945904d77e5158602179cdd2d9c2a3)
二元函数梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P124_3712537.jpg?sign=1739566315-HXOqb6O952xtzHeU98iohMKp9ebxWex9-0-dec513721cbb4a08e1da80f424f782b1)
图3.25告诉我们此梯度向量同样平行于x1轴,方向为x1负方向,向量方向和大小不随位置变化。
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P125_3712540.jpg?sign=1739566315-KWZQ6TwieP6AMxJXNSmFQk5ngFHCJnFT-0-73e91dd4b633e2316b05c0b61e2cb890)
图3.25 垂直于x1-z平面,梯度向量防线为x1负方向
图3.26展示平面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P125_3712541.jpg?sign=1739566315-rHyTBebLqhzbFUFE284W5gnOAStzBlcj-0-62a6c7bdbfdcc58b5d7156c97018a175)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P125_3712542.jpg?sign=1739566315-ce0704vkAs2E7HG39baArbVZuD8iHxlL-0-d666405af2e1c33304404a1b8e93e2ba)
图3.26 垂直于x2-z平面,梯度向量防线为x2正方向
二元函数梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P125_3712543.jpg?sign=1739566315-sB3lxBOMevStgN4ECOArmXdObyDnkea1-0-e0de1442380c42d0ef0310604a2edb4b)
通过观察图3.26,发现此梯度向量同样平行于x2轴,方向为x2正方向,向量方向和大小不随位置变化。
图3.27中平面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P125_3712545.jpg?sign=1739566315-ToNISdPtGjWlSOySYMzLmP3a7hbsCMxP-0-5b785417c61f9e70070d9a8d6a8ea109)
该平面梯度也是一个固定向量,如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P125_3712546.jpg?sign=1739566315-wCArSA1XT2B8NFswF6Ir4o1sYqcwZrcp-0-f718acae2d32cc1f8d17b92a422c22a2)
如图3.27所示,梯度向量和x1轴正方向夹角为45°,指向右上方。沿着此梯度方向运动,f(x1, x2)不断增大。f(x1, x2)等高线相互平行,梯度向量和函数等高线垂直。
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P126_3712548.jpg?sign=1739566315-s99t39pv63Vm8qZvOiN4ZnuRK8iH1bzk-0-80ca8fc994db647e8159ff64ab0b194e)
图3.27 f(x1, x2)= x1 + x2平面和梯度
图3.28中平面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P126_3712549.jpg?sign=1739566315-AD1aea7fUmW0t7kqxeK4PxF4BVCpOfeQ-0-b8919ea428cd6e0b128b34e1a37998d1)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P126_3712550.jpg?sign=1739566315-SJSAhjbSulEAaEifpY47RXUtpAkZZX86-0-a88abbe5507c6b8d44c231c1c448a6e3)
图3.28 f(x1, x2)= x1 - x2平面和梯度
观察图3.28,能发现此平面梯度不随位置变化:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P126_3712551.jpg?sign=1739566315-8Y7KuTinGZwUmf1YRWMiZaO5y4MgYh8A-0-6663d5aafc3b02240c182a204e6011dc)
该梯度向量和x1轴正方向夹角为45°,指向右下方。
图3.29中开口朝上圆锥面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P126_3712552.jpg?sign=1739566315-YJocPE8U5xdhxci5ZMzkVLv5KgdPxtyK-0-0ae7434305c5e48f932860800612cb57)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P126_3712553.jpg?sign=1739566315-JiwEPfEb5o63cFiLfPjSeoUiQVibREzd-0-6837de596eb072b1df2bbeb73726c982)
图3.29 开口朝上圆锥面
上述曲面梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P127_3712555.jpg?sign=1739566315-cjGWpHps2619g3VfsuwgteAaVK7TMHaE-0-8e6159f204424b5dc182788a87e123f9)
该曲面梯度向量随着位置变化而变化。但是梯度向量模,即向量长度不变,具体计算如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P127_3712556.jpg?sign=1739566315-F545EhFDvNPqghLaae0z2cZgdDHkxujX-0-7d9a17399ad440f886350f5e622bfe8a)
图3.29梯度向量指向极小值相反方向。另外,函数在(0, 0)点不可导,即梯度向量在该点没有定义。
图3.30中开口朝下圆锥面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P127_3712557.jpg?sign=1739566315-lt77qV7P5KR6YweL15FZDkCirTCQM0lY-0-b8fb91701ca541d273b967a546db0a1a)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P127_3712558.jpg?sign=1739566315-0gNwEbiTXQV3sk2JspVvdDgFYiavxJfZ-0-7c423be64d6444a78b563dea47364657)
图3.30 开口朝下圆锥面
上述曲面梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P127_3712559.jpg?sign=1739566315-Y0uC2YwuRZ0U8QsRP4hnj2UpIWYLr99Q-0-4fc038fc8fecad0e24e47853ea7e1087)
容易得出结论,曲面不同位置梯度模一样大小。图3.30梯度向量指向极大值方向。同样,函数在(0, 0)点不可导。
图3.31展示开口朝上正圆抛物面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P127_3712560.jpg?sign=1739566315-jMhoP9fjhKfTptkrE7aBDbsJ2DKW51tc-0-ad0f4a60e3d0772897260fc5d20268a6)
上述曲面梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P127_3712561.jpg?sign=1739566315-TLMCj9FrMPUpi0k5DLwpypqSZ9upau8n-0-3ad9369b4f18f3b4f9ed351eac061641)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P128_3712563.jpg?sign=1739566315-8VhRgGno4CCXPTI638AkGHw8ZJCkjCXI-0-0d25cd6a2425062a4bad00b35b083c4b)
图3.31 开口朝上正圆抛物面
该曲面梯度大小和方向随着位置变化而变化。值得注意是,对于正圆抛物面,同一等高线上不同点梯度大小相同。图3.31所示,梯度向量方向背离最小值点。极小值点处,梯度向量模为0。
图3.32展示开口朝下正圆抛物面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P128_3712564.jpg?sign=1739566315-V8NTDEnQ99daV2fQxr7MDFybmNa69Xcv-0-586c34f9a5bb91c0a8616044b5904238)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P128_3712565.jpg?sign=1739566315-aTqRECOxd3yk4CEFE5qxy0w8g47wpgL7-0-4284664557254583c3fae6f12b96455d)
图3.32 开口朝下正圆抛物面
上述曲面梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P128_3712566.jpg?sign=1739566315-BcGTBiGP5V5TnupRlPYEjLoFs5FYJj7Y-0-4fa820a26119b3be9844252f385858b7)
图3.32中梯度向量方向指向最大值点。
图3.33展示双曲抛物面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P128_3712567.jpg?sign=1739566315-TILqpF5dYD1znNwJ0ZBEHGT2K8sgQud5-0-af98a5d7db3e19c42ae33aeece4567d1)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P129_3712569.jpg?sign=1739566315-LCchYWLYpU2dszhuVNxtOLU5pqnc3lg7-0-0a6a0f09ce0bd4fd0bdd8e26c63ef8af)
图3.33 双曲抛物面
以上曲面梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P129_3712570.jpg?sign=1739566315-TOuv0rw6gBtpDgi8Leqb8TzKhy8pFa8A-0-b5087f9b4472d168e41c32056ee81146)
图3.33中,鞍点为(0, 0),在该点上有一些梯度向量指向(0, 0),另外一些梯度向量方向背离(0,0)。虽然在(0, 0)点,梯度向量为零向量,该点并非极值点。
图3.34展示旋转双曲抛物面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P129_3712572.jpg?sign=1739566315-zhCaZiYltsk73S3qFKNkkBtftaiaIEZu-0-5c96642f6c1b42b1c7c2540fc6211f7e)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P129_3712573.jpg?sign=1739566315-osVyqcTyZRnbT9mLO8efsqWWXvc7pheL-0-fade8ddbc263989d6df00cfb9b0bbd35)
图3.34 旋转双曲抛物面
上式曲面梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P129_3712574.jpg?sign=1739566315-HDrUXSnB2OQVdqzFnzH20x4LyYRH4lbo-0-f42f7a14bcc872f34acc61e5d9253ff3)
图3.34中,鞍点同样为(0, 0),同样一些梯度向量指向原点,另外一些梯度向量背离原点。
图3.35展示山谷面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P129_3712575.jpg?sign=1739566315-A4jGH0fp6ROGAci142Cx0W9cuwgkoJVl-0-564dff67aaa0c654554f110d1638a4fd)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P130_3712577.jpg?sign=1739566315-UJPrH002zHiDKFj7JVQbd74yobB7em4R-0-2122f09a9f86773e6813a87539ebfacc)
图3.35 山谷面
此曲面梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P130_3712578.jpg?sign=1739566315-S8ms0umjlICpZ269tngjxaDRaqARDUzI-0-e0636cf19e9d317315aa8411af3df3c0)
如图3.35所示,曲面等高线平行于x2轴,曲面梯度垂直于x2轴。梯度向量平行,大小随着位置变化。曲面极小值点无穷多个,这些极小值点均在一条直线上;梯度向量均背离这条最小值所在直线。
图3.36展示山脊面解析式如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P130_3712579.jpg?sign=1739566315-Fd1aunYwOZNTdAzVlCWn0K4WFEM47pjh-0-01f5ff51d8db17bc6735023e5c89cbea)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P130_3712580.jpg?sign=1739566315-irsLmErCoR4UZTdGOpfVqo7xoIpVeD5j-0-13419e9e87a6287b2be1ad909ce18c60)
图3.36 山脊面
该曲面梯度如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P130_3712581.jpg?sign=1739566315-WSAFm7HsG0xEe0HmZ1knKBuvtVsf21Da-0-ee1a758043d431fc562189ffbeb8a19f)
如图3.36所示,曲面等高线平行于x1轴,曲面梯度垂直于x1轴。曲面极大值点无穷多个,梯度向量方向均指向这条最小值所在直线。请读者根据本章代码自行编写代码绘制本节图像。