![伍胜健《数学分析》(第1册)配套题库【名校考研真题+章节题库+模拟试题】](https://wfqqreader-1252317822.image.myqcloud.com/cover/619/27032619/b_27032619.jpg)
第2章 序列的极限
1.求下列极限:
(1).[北京大学研]
(2)f(x)在[-1,1]上连续,恒不为0,求.[华中师范大学研]
解法1:
①
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image062.jpg?sign=1738884270-oWjyLrP8yQ5CIWKZWuVGl1iOGjzrvhWI-0-df16442b9fd0ae158e406756d9e4c399)
由①式及两边夹法则,.
(2)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image064.jpg?sign=1738884270-pmvqsuKMaDdMEu5Y09ozUjEQRMHzvO9k-0-51ad386c91c710f99a0e8d756224247d)
故
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image065.jpg?sign=1738884270-LPdI6a8B3QX0VaCbe8chZYTqpyUcDB00-0-801b060ef79c4c5b08b776eb1d05a8b2)
解法2:
f在[-1,1]上连续;因而f(x)有界
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image066.jpg?sign=1738884270-2rLRc8xcWyXpYETwMIAuEM7SJEf9BiMF-0-eba4fc2475956ae3a0df76e47ad626ca)
2.设数列单调递增趋于
①
证明:(1)
(2)设 ②
证明:,并利用(1),求极限
.[中国人民大学研]
证明:(1)(i)先设,由①式,
,存在N>0,当n>N时有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image076.jpg?sign=1738884270-a7xtZwWOf2YTCAhkNYmLA0X9PCPlHYOs-0-5e9ee258d74bb435685d3d2621995788)
特别取n=N+1,N+2,……
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image077.jpg?sign=1738884270-C05dYXGkyhHXfa40jhYVpi7wtlMpDyD9-0-13210a032d8f566d287946802bae64d5)
将这些式子统统相加得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image078.jpg?sign=1738884270-2cRzzh5FTqZdpGJ71pqBr26aBPFdgDE5-0-a6120300437a473bb74c2626378e6626)
此即
③
而
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image080.jpg?sign=1738884270-UiGY2YZeQx2jJnihOSgnAEdoETOCyKwo-0-3e2db53cab40708803cde40e52cd357b)
由于以及③式,
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image083.jpg?sign=1738884270-vMeGniF1zQPHVDHQQkOk1Pr3gW8HtlC7-0-a0de02d566b730493a8a1c593e93364f)
(ii)再当时.由①有
④
⑤
下证递增趋于
,由④知,
.当n>N1时,有
⑥
,即
单调递增.由⑥式有
,从而有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image094.jpg?sign=1738884270-L4YihgzmpxbXDUPPEBZ7iOredXbm6VWr-0-ef64fe945689bd1414241b624be319fe)
将这些式子统统加起来有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image095.jpg?sign=1738884270-RtceSz9FCLxfxTWB1c481KV4j2SRgVPe-0-2ffa3385d881069d170cf70bef17a7c8)
⑦
显然当时,
,由⑤式及上面(i)的结论有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image099.jpg?sign=1738884270-vkpBH7ILola0WgSblD3q1zkh0ZU5W0CS-0-4cc5fe38564672e76c41bb5ae2c49523)
(iii)当时,只要令
,则由上面(ii)可证
(2)单调递减.因为
,所以
.即
有下界,从而
(存在).由
两边取极限有
此即
再求,考虑
⑧
⑨
⑩
由⑨⑩两式
⑪
将⑪代入⑧得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image117.jpg?sign=1738884270-DxWYvk2nti0CHNCmpv84eXId7drQbzd5-0-9af781b63793844edad889c8bd91b2df)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image118.jpg?sign=1738884270-hUdg94YvDExbrVgXyfVBe8gtRROrXJ0x-0-936267f0de8193085738f8688ae2f531)
3.求极限.[中国科学院研]
解:解法1
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image121.jpg?sign=1738884270-EygetRV32gHuAPPS20leoUZgoYnkgwjv-0-bf8d49e969d3c263052956ee971472fb)
解法2 设
单调增,又
,则
有上界,故
收敛.
令
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image129.jpg?sign=1738884270-TPQLhhTYTVwsEZVpV2SohSJhwBJcvovv-0-42ce9d8ec470aaadd8c045900ba9fc42)
得
4.已知,求证:
.[哈尔滨工业大学、武汉大学研]
证明:(1)当a=0时,那么,存在N>0,当n>N时
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image135.jpg?sign=1738884270-S4MFIRtwHmAuAzhYJYwJmtCoaUJCdTNP-0-feacf51fcc949e8bf41a91b4dbf33b88)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image136.jpg?sign=1738884270-Reqdydw2KgBuY0zmtqlWQbdDwjnwpCSD-0-48fa33751a5e5d349ffde97134757d32)
(2)当a≠0时.因为
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image137.jpg?sign=1738884270-NA5E7K6PcXmz9zcoPbCeghzIh5OITRdS-0-6138b6dd2ef4e50b88cb5a3900fc33c7)
令,则对
,存在N>0,当n>N时,有
而
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image141.jpg?sign=1738884270-9gxMEzzOSUZ0jzzdXjO5rk0QlVRSLzmN-0-299b327f176bb957053f45a465f14421)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image143.jpg?sign=1738884270-5QlZSMFWbIMRxziU7NQBug86iLmgnVFY-0-870e51c850564bd107f6d8f0da50da48)
5.设,且
,n=1,2,…,证明
收敛并求其极限。[西安电子科技大学研]
证明:显然有。由
可得
于是
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image150.jpg?sign=1738884270-zuSK3pAwTxt1d6FC32SOKjiMJU3XcxSS-0-31b505b3ad8dae1ef3781f48a6b846ba)
故收敛,其极限为
6.设,证明:
[上海交通大学研]
证明:因为,所有对任意的ε,存在N,则对任意的n>N,有
则
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image156.jpg?sign=1738884270-S06A1yBmtwDui5uOwJ45pV1eRiNIzw4K-0-4a82226937c00e616c3cb9430cc7bea5)
再由可知左右两侧的极限存在且相等,都等于
7.设求
.[南京大学研、山东师范大学2006研]
解:由于,根据递推关系和数学归纳法可知
于是有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image163.jpg?sign=1738884270-5XV7RrkhxEBzIYXSeNPJEONlnMzrYcK5-0-e152d4fee4dce203086dd003c4571620)
因此为单调递增有界数列,故存在极限,记为x。在递推关系式中令
,
解得x=2,从而
8.设证明
收敛,并用
表示其极限。[北京理工大学研]
证明:所以对任意的自然数n、P,有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image171.jpg?sign=1738884270-ksP5QzdnXtivpgGV5dXNLE8KWOOSE6Xv-0-9324c067aafe26c94489b1653c61d0e4)
当n→∞时,,因为
由Cauchy收敛准则可知
收敛,因为
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image175.jpg?sign=1738884270-rBHBcVbmrfBvgRy42LUEWnYBRiVzkLTd-0-454b4477c8a735a9cd68629ca049ac68)
两边取极限,利用等比数列的求和公式,则
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image176.jpg?sign=1738884270-a4Mhd7Y1PbwDRoYdxJAjrCMAk2jUYqkB-0-439a1aa175bbb67cf1a108713ed75f06)
9.数列
①
求.[湖南大学研]
解:
②
由②式有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image181.jpg?sign=1738884270-f6qawUYQi596tZaS2Yy0dZ5tykbH1iFp-0-cf44d0f6f9e626af28fb953b5c9a8cef)
把上面各式相加得
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image182.jpg?sign=1738884270-G5f0WZ1le9ZUa5ku7KybIa4OepVN7fhf-0-1e9f57c321041767c5ea1e919e527f23)
两边取极限
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image183.jpg?sign=1738884270-pTGvUxMkCnfPSKPzFJdcBdvXMoUfnVWp-0-5a30f1135be14227b17ad47a4a15a47b)
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image184.jpg?sign=1738884270-5A5QlzocGwVLqXmC5KToEj1SBf8dM36I-0-7a80bd682e1b1b850ec914962e375a63)
10.设是一个无界数列.但非无穷大量,证明:存在两个子列,一个是无穷大量,另一个是收敛子列.[哈尔滨工业大学研]
证明:取充分大的数M>0,则数列中绝对值不超过M的个数一定有无穷多个,(否则
是无穷大量了),记A为
中绝对值不超过M的元素所成集合,则A是含
无限项的有界集
(1)因为满足的有无穷多项,任取一
又使
的有无穷多项.
取,且
,如此下去,得一
的子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image197.jpg?sign=1738884270-xXMhnt1cqzqYmx7AYFZMvf4SrLGmqtL9-0-75b242d6e15000cd6a4b80610d790579)
于是有
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image199.jpg?sign=1738884270-uuwTJrtOVwRfwulBQ4lXVv8Og3SeMPDh-0-a5e1c147126ddec224e9982f2037e447)
(2)若A中有无穷多项是相同的数a.则取其为的子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image202.jpg?sign=1738884270-I52ctsHMLWNsZStNXXLmB3ghiCv9pXrN-0-e5a755efca8f28528f9bd9288256f93d)
是收敛子列.
若A无相等的无穷多项,将[-M,M]等分为二则其中必有一区间含A中的无穷多项,令其为[a,b],取xn1∈[a,b],再将[a,b]等分为二,则其中必有一区间含A中无穷多项,令其为,又再将[a1,b1]等分为二,令含A中无穷多项的为[a2,b2]取
且n3>n2,如此下去,得一子列
![](https://epubservercos.yuewen.com/50325C/15436378605511806/epubprivate/OEBPS/Images/image205.jpg?sign=1738884270-bq6qysCDxX8AsKwjmzLLhpTkqsNJ3K8j-0-2a288cea4ba03453b1a6957a19956c6f)
且.由闭区间套原理
于是
的收敛子列,或者A为有界集,应用有界数列必有收敛子列定理,知
必有收敛的子列.