![MATLAB矩阵分析和计算](https://wfqqreader-1252317822.image.myqcloud.com/cover/872/26542872/b_26542872.jpg)
上QQ阅读APP看书,第一时间看更新
2.2 矩阵的加法、乘法和矩阵的转置
1. 矩阵的加法
设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8145.jpg?sign=1739327894-DJE3cuTzEY9PA4869v40ib76hmHRhCWa-0-4e53d31638405d933c45dcd0f281d023)
是两个s×n矩阵,则s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8146.jpg?sign=1739327894-JHv5HD0ps4ws7fYd7q4RcpAO7mECj35w-0-3145e2e506b9c3dde8524627f4e403c3)
称为A和B的和,记作
C=A+B
从定义可以看出:两个矩阵必须在行数与列数分别相同的情况下才能相加。
【手工计算例5】
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8149.jpg?sign=1739327894-IOOAZblYNFgGzUKMRW6ElZqZk2GiXXeh-0-08ceafa1b2648cadcd4fb2be030915a9)
2. 矩阵的乘法
定义矩阵的乘法如下:
设A是一个s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8151.jpg?sign=1739327894-uSyGJdbU2cBIL1WaLIPKhcoCFZvgdqol-0-441b097bf1224a595f7de2b0fd374487)
B是一个n×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8152.jpg?sign=1739327894-GBojoEonCKifMwHUMufqYKZrqIDwTieU-0-f112fc46ba430ceaa9fb7c1deba56057)
作s×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8153.jpg?sign=1739327894-sF6YwyA38EsDx4Of7AdBDZ4uAT3uHicH-0-ecddfa0776a3e2d6ec27b55c9d52e001)
其中,
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8154.jpg?sign=1739327894-Jdg4an5y0u31uLrChjcXbOrDmJjfhFLc-0-2347c49f7bccc51a23bf5113967c96cd)
矩阵C称为矩阵A与B的乘积,记为
C=AB
注意:在矩阵乘积的定义中,要求第1个矩阵的列数必须等于第2个矩阵的行数。
【手工计算例6】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8157.jpg?sign=1739327894-K7MS9W2fluiAkx8iAugm2MM5tqqZLlLy-0-c2fc8c103bcd8945901323819c68efbf)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8158.jpg?sign=1739327894-N73Mrx8UtZuhWo707mf8nYcnoj3eUhGA-0-8e8c4476c90fdcbfb969b3abd08de699)
矩阵的乘法与数的乘法有一个重要区别:就是矩阵的乘法不满足交换律,也就是说,矩阵的乘积AB与BA不一定相等。看下面的例子。
【手工计算例7】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8161.jpg?sign=1739327894-FdkVIRY2vri4UzBNvDpRtPtrxyxRm2Vb-0-320f788d8f9ecbcbade513ea35254ac5)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8162.jpg?sign=1739327894-Y7vxYl9K2waSPPn4m0ZaM4c0PAiNTh5n-0-2176fb3fd7b1186a79a0c58936e07cb7)
可见,在本例中,AB和BA完全不同。
3. 矩阵的转置
把一个矩阵的行列互换,所得到的矩阵称为这个矩阵的转置。
设A是一个s×n矩阵:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8165.jpg?sign=1739327894-mEyjtJehAcGUNyjtLCkmDhGvSLEGfFhC-0-53d79ec02b62152e9642db0db1df4b29)
s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8167.jpg?sign=1739327894-coUxyNwJ205o5F8XMKFNk5TvOfsfQxoZ-0-7c778da8cf746ebf656806b3f9252c86)
称为A的转置矩阵,记作A′。
【手工计算例8】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8168.jpg?sign=1739327894-S2AcvI895tXGE4B70agKsr8auxMZoBzP-0-3bbc3b8f60ec4ea257400f0b6eb5cabb)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8169.jpg?sign=1739327894-tcTySBHzkWx5ttS4VXgOGHB6DpuTuXug-0-24424afc65b0e78945d52435a7034cc5)