![电工36“技”](https://wfqqreader-1252317822.image.myqcloud.com/cover/826/654826/b_654826.jpg)
第1章 电工计算基础
1.1 常用计算公式
1. 展开式
(x+a)(x+b)=x2 +(a+b)x+ab
(a ±b)2 =a2 ± 2ab+b2
(a ±b)3 =a3 ± 3a2b+3ab2 ±b3
(a+b+c)2 =a2 +b2 +c2 +2ab+2bc+2ca
(a+b+c)3 =a3 +b3 +c3 +3a2b+3ab2 +3b2c+3bc2 +3a2c+3ac2 +6abc
a2-b2 =(a-b)(a+b)
a3 ±b3 =(a ±b)(a2∓ab+b2)
a3 +b3 +c3-3abc=(a+b+c)(a2 +b2 +c2-ab-bc-ca)
a4 +a2b2 +b4 =(a2 +ab+b2)(a2-ab+b2)
(ax+b)(cx+d)=acx2 +(ad+bc)x+bd
2. 二次方程式
ax2 +bx+c=0,a、b、c是实数,且a≠0,则该方程的根为
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0006_0001.jpg?sign=1738804808-kTkyOuu0fdFR1rAty43XFxlLksr00DY5-0-4455ef9c1c12f07174977dd3d02e7747)
且根与系数的关系为
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0006_0002.jpg?sign=1738804808-Ee6CcHtyirobnt1gRBxt7H4htJ3K2S1L-0-84f5d06a06ccaf0e9a41617a71ca2d9c)
判别式为
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0006_0003.jpg?sign=1738804808-GW5zPGPp98MJFS3H79U3V5vyKj34tbWp-0-ffca7568faa3088577ce5d6e4224357e)
3. 指数定则
m、n为正整数,a、b为正实数,则
am ×an=am+n
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0001.jpg?sign=1738804808-kVX8KSHesk7yo5bstF5jsu6quEoa38TT-0-1c4973947ab5e4a3dee7537fe7c53f3b)
(am)n=amn
(a×b)n=an ×bn
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0002.jpg?sign=1738804808-Pq7hVaj90MCxs1Qtj8DoonGcVlltWKzv-0-ffb93e5163f602b4de3f956024160614)
a0 =1
4. 对数定则
x、y、a、b、c为正实数,则
logaa=1
loga1=0
loga(x·y)=logax+logay
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0003.jpg?sign=1738804808-JHV6i25xVxMh37BdaSzMbrCux1ektzGT-0-723306eff7d78c1a0e6ce913408c47f0)
logaxn=nlogax
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0004.jpg?sign=1738804808-03vd1c2fG9pYT60Uw3sUAta641b1Gx4y-0-c922061b8bff75ba0777cd042d5ade78)
logax=logab × logbx
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0007_0005.jpg?sign=1738804808-9dd6WmOaBAC2FJASKp142e0XK5PDvwU1-0-13c7c7cebc6823163db1c6bcd3354f1c)
logab × logba=1
lgx=lge × lnx=0.434 3lnx(其中e=2.718281 8)
5. 级数定则
等差级数
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0001.jpg?sign=1738804808-T2mktaBVVDoirQmnvW90I4XmqXFKpR18-0-6f1b39ff035a213d7745758e2d515880)
等比级数:a+aq+aq2 +…+aqn-1 ={L-End}
某些数列的前n项和
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0003.jpg?sign=1738804808-5G4u5RpSzDRyuudgYAEYT4X2k4hjhLpY-0-2f53f68521f4823f016c80fe2132278d)
1+3+5+…+(2n-1)=n2
2+4+6+…+2n=n(n+1)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0004.jpg?sign=1738804808-lOFlUqICCGEJ3LX120jbURG3WOOf3KDZ-0-7a41c9fe7f8d9365a8dea51d00ad96d6)
13 +33 +53 +…+(2n-1)3 =n2(2n2-1)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0005.jpg?sign=1738804808-CJnjuh2PO5BibsL9gfXBQ1iS6uAaQkHc-0-eb2521d1fb8af60555afedaf59aeaab8)
6. 二项式定理
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0008_0006.jpg?sign=1738804808-doEnoNBZLNjie6yn1LLWvqaYf4WWw3aG-0-15a9f8a8fe3307f59edf6c126afee250)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0001.jpg?sign=1738804808-mbP0M2JyZkbedIMWkBmmNfKTm6xO5juG-0-987988b8dc3d2bd80062a63f88e3207c)
7. 近似计算
当a≪1,b≪1时
(1 ±a)(1 ±b)=1 ±a ±b
(1+a)(1-b)=1+a-b
(1 ±a)n=1 ±na
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0002.jpg?sign=1738804808-EzpFxFXuYKioYc0qEaD7zJEX6Ytthbno-0-9dec9543a4675f88d210738368b45e73)
sina=a
cosa=1
tana=a
8. 三角函数表(见表1-1)
表1-1 三角函数表
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0003.jpg?sign=1738804808-pUv1I6d6O2mh7l7Tm6MK2DcxyrpPUEft-0-090647628f2716c2c47bb37e1f7644c6)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0009_0004.jpg?sign=1738804808-VLaABBBKqpSzUIKds5Sn7tSwnY507xxq-0-b789999d70f016b9e2854f4e601380c2)
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0001.jpg?sign=1738804808-hqfJfxFKJTzGt8B3RB3llhwrHxukB7Hz-0-10e7d8130ebbe58efd766d2e7c5ec225)
sin2θ+cos2θ=1
1+tan2θ=sec2θ
1+cot2θ=csc2θ
sin(α ±β)=sinαcosβ ± cosαsinβ
cos(α ±β)=cosαcosβ∓sinαsinβ
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0002.jpg?sign=1738804808-PwjEHCLyaGoeziq0qb3wzxs6Hi2PsB6M-0-4a6c9da584f29b2ad35de44538c0d51d)
sin(2α)=2sinαcosα
cos(2α)=2cos2α-1=1-2sin2α
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0003.jpg?sign=1738804808-DEhwXzyWvuwloIVQS84nBgBzesqTBo0T-0-5d27ef13e3e5678e82b4c1501297d9f3)
9. 复数
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0010_0004.jpg?sign=1738804808-AV3efDhMuMyGcs2b9kjvLywsmfUwQprT-0-22fe0e85e2416fc3ce5e323ddb7ad9a0)
复数的三种表示式及其相互关系如下所述。
代数式:z=a+bj
三角式:z=|z|(cosθ+jsinθ)
指数式:z=|z|ejθ
其中,a=|z|cosθ,b=|z|sinθ,{L-End} ,tanθ={L-End}
。
复数的运算:
z1 +z2 =(|z1|cosθ1 +|z2|cosθ2)+j(|z1|sinθ1 +|z2|sinθ2)
z1 ×z2 =|z1||z2|[cos(θ1 +θ2)+jsin(θ1 +θ2)]
![](https://epubservercos.yuewen.com/57D166/3590302103728401/epubprivate/OEBPS/Images/figure_0011_0003.jpg?sign=1738804808-n1rtUf0dAvFcf3aEFvr5zifjTBcQXdnq-0-a5df295a6899fe6981d9c3cb4d9995b1)
10. 函数和坐标图
直线方程:y=ax+b
圆方程:(x-a)2 +(y-b)2 =r2
椭圆方程:{L-End}
双曲线方程:{L-End}
抛物线方程:y2 =4ax