因果推断与机器学习在线阅读
会员

因果推断与机器学习

郭若城等编著

计算机网络/人工智能· 14.3万字

更新时间:2023-11-24 19:49:31

最新章节:封底
开会员,本书免费读 >
本书是一本理论扎实,同时联系实际应用的图书。全书系统地介绍了因果推断的基本知识、基于机器学习的因果推断方法和基于因果推断的机器学习方法及其在一些重要领域的应用。全书共分6章。第1章从潜结果框架和结构因果模型出发,介绍因果推断的基本概念和方法。第2章介绍近年统计和机器学习文献中出现的一些重要的基于机器学习的因果推断方法。第3章介绍能够提高机器学习模型的泛化能力的因果表征学习。第4章介绍因果机器学习如何提高机器学习模型的可解释性与公平性。第5章介绍因果机器学习在推荐系统和学习排序中的应用。第6章是对全书的一个总结和对未来的展望。本书对结合因果推断和机器学习的理论与实践进行了介绍。通过阅读本书,读者不仅可以掌握因果机器学习的基础理论,还可对本书中提到的论文代码进行钻研,从而在实践中加深对因果机器学习的理解。
上架时间:2022-11-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
加书架
下载
听书

因果推断与机器学习最新章节

查看全部
立即阅读
郭若城等编著
主页

同类热门书

最新上架