会员
基于机器学习的声发射信号处理算法研究
周俊 朱文耀 王超更新时间:2021-02-22 16:34:43
最新章节:作者简介开会员,本书免费读 >
本书共5章,介绍了声发射信号处理方法、研究现状,结合人工智能发展探讨了机器学习在声发射信号消噪和识别中的应用,研究了K-means聚类算法与小波分析对声发射信号进行去噪的方法,以及小波分析提取声发射信号特征的方法,并利用人工神经网络对声发射信号特征进行分类识别以确定声发射信号的类型。本书介绍了部分人工智能前沿动态,适合声发射信号处理、人工智能方向的研究人员阅读,也可作为相关专业研究生的参考资料。
上架时间:2020-12-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
基于机器学习的声发射信号处理算法研究最新章节
查看全部- 作者简介
- 参考文献
- 第5章 完成的主要研究工作
- 4.4 实验结果与分析
- 4.3 BP神经网络设计与训练
- 4.2 基于小波分析的声发射信号特征提取
- 4.1 人工神经网络
- 第4章 基于小波分析与BP神经网络的声发射信号特征提取与识别
- 3.4 实验结果与分析
- 3.3 基于K-means聚类算法的小波去噪阈值生成
周俊 朱文耀 王超
主页
同类热门书
最新上架
- 会员
破解深度学习(基础篇):模型算法与实现
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和必备工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神计算机14.8万字 - 会员
大语言模型:原理、应用与优化
这是一本从工程化角度讲解大语言模型的核心技术、构建方法与前沿应用的著作。首先从语言模型的原理和大模型的基础构件入手,详细梳理了大模型技术的发展脉络,深入探讨了大模型预训练与对齐的方法;然后阐明了大模型训练中的算法设计、数据处理和分布式训练的核心原理,展示了这一系统性工程的复杂性与实现路径。除了基座模型的训练方案,本书还涵盖了大模型在各领域的落地应用方法,包括低参数量微调、知识融合、工具使用和自主智计算机12.1万字 - 会员
MindSpore大语言模型实战
随着ChatGPT等大语言模型的迅速发展,大语言模型已经成为人工智能领域发展的快车道,不同领域涌现出各种强大的新模型。开发者想要独立构建、部署符合自身需求的大语言模型,需要理解大语言模型的实现框架和基本原理。本书梳理大语言模型的发展,首先介绍Transformer模型的基本原理、结构和模块及在NLP任务中的应用;然后介绍由只编码(Encoder-Only)到只解码(Decoder-Only)的技术计算机6.6万字 - 会员
华为MindSpore深度学习框架应用开发实战
全书从逻辑上共分3部分。第一部分由第1章和第2章组成,介绍深度学习的基础理论、MindSpore总体架构和编程基础。第二部分由第3~8章组成,介绍MindSpore框架各子系统的具体情况,包括数据处理、算子、神经网络模型开发、数据可视化组件MindInsight、推理、以及移动端AI框架MindSporeLite。第三部分由第9章和第10章组成,介绍使用MindSpore框架开发和训练的经典深度计算机13万字 - 会员
ChatGLM3大模型本地化部署、应用开发与微调
《ChatGLM3大模型本地化部署、应用开发与微调》作为《PyTorch2.0深度学习从零开始学》的姊妹篇,专注于大模型的本地化部署、应用开发以及微调等。《ChatGLM3大模型本地化部署、应用开发与微调》不仅系统地阐述了深度学习大模型的核心理论,更注重实践应用,通过丰富的案例和场景,引导读者从理论走向实践,真正领悟和掌握大模型本地化应用的精髓。全书共分13章,全方位、多角度地展示了大模型本地化计算机13万字 - 会员
PyTorch 2.0深度学习从零开始学
PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中的框架之一。《PyTorch2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可计算机11.3万字 - 会员
智能计算系统:从深度学习到大模型
本书由中科院计算所、软件所的专家学者倾心写就,以“图像风格迁移”应用为例,全面介绍智能计算系统的软硬件技术栈。第2版以大模型为牵引进行更新,第1章回顾人工智能、智能计算系统的发展历程,第2、3章在介绍深度学习算法知识的基础上增加了大模型算法的相关知识,第4章介绍深度学习编程框架PyTorch的发展历程、基本概念、编程模型和使用方法,第5章介绍编程框架的工作原理,第6章回顾深度学习所用的处理器结构从计算机34.9万字 - 会员
一本书读懂大模型:技术创新、商业应用与产业变革
这是一本人人都能读懂的大模型综合指南,既是一本大模型的科普书,又是一本大模型的商业书。由中国电信研究院天翼智库官方出版,从核心技术、基础设施、商业应用、产业体系、安全治理5个维度全面讲解了大模型。语言上通俗易懂,内容上深入浅出,呈现上图文并茂,给读者良好阅读体验的同时,让读者对大模型的理解事半功倍!无论你是AI工程师,还是完全没有IT技术背景的爱好者;无论你是一线的从业人员,还是企业的管理者和决策计算机13.2万字 - 会员
量子人工智能
量子计算与人工智能的交叉融合,促使量子人工智能的不断发展。本书旨在采用对深度学习爱好者友好的方式,构建量子人工智能应用。全书共13章,第1章和第2章系统介绍量子计算机发展脉络和量子计算编程的基础知识。第3~7章分别介绍不同的深度学习方法和在这些算法逻辑上构建量子启发算法的方式,用量子线路中的相位作为神经网络的可学习参数,重构为量子神经网络算子。这些算子可以在PyTorch环境中直接调用。第8章和第计算机7.6万字